0=-16t^2+55

Simple and best practice solution for 0=-16t^2+55 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-16t^2+55 equation:



0=-16t^2+55
We move all terms to the left:
0-(-16t^2+55)=0
We add all the numbers together, and all the variables
-(-16t^2+55)=0
We get rid of parentheses
16t^2-55=0
a = 16; b = 0; c = -55;
Δ = b2-4ac
Δ = 02-4·16·(-55)
Δ = 3520
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3520}=\sqrt{64*55}=\sqrt{64}*\sqrt{55}=8\sqrt{55}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{55}}{2*16}=\frac{0-8\sqrt{55}}{32} =-\frac{8\sqrt{55}}{32} =-\frac{\sqrt{55}}{4} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{55}}{2*16}=\frac{0+8\sqrt{55}}{32} =\frac{8\sqrt{55}}{32} =\frac{\sqrt{55}}{4} $

See similar equations:

| -3.3x=7=15.8 | | -8(a-8)=16 | | 3(2-k)=-3k+² | | 3x-x+2=4(2x-1)= | | -81=x/6 | | 3x+7+2x=5x-9 | | 0.75x+12=0.32x-18 | | -5+r/2=-7 | | 7+p=-8(6p-7) | | -5(8p+6)=10 | | b-41=120 | | 4+2x=3(−x+7)−37 | | 8.5=6.5(2d−3)+d | | 9+b=34 | | 3(3a+2)+6=81 | | 4(0.5n-4)=n-0.75(8-4n) | | x+2+3x=4x+2 | | 25x=24x+3 | | 82+70+2x+4=180 | | 2/3(3x-3)=8 | | 12y-93=5y-72 | | 3/8=40/n | | x/11+17=15 | | 9-5x=1-3x | | -3(2x+7)=0.5x | | 5x–6=3x+4 | | 4.12=y/9 | | 0.5x3.2=1.6 | | 3/8=2/n | | Y=4+3/2x | | (62-x)=(76-2x) | | 5x-4x+8=4x+1 |

Equations solver categories